Step-by-step guide for measuring social inequalities in health

0....

Step by step guide for measuring social inequalities in health

© Every Woman Every Child Latin America and Caribbean (EWEC LAC)

This publication may be reproduced for use in research, advocacy and education only, provided the source is acknowledged (EWEC LAC). This publication may not be reproduced for other purposes without the prior written permission of EWEC LAC.

Step-by-step guide

for measuring social inequalities in health

CONTENT

10
13
14
25
26
36
43
54
59
60

4

Preface

In the last 10 to 15 years, the countries of Latin America and the Caribbean (LAC) have made significant achievements in reproductive, maternal, neonatal, child and adolescent health. Even with these advances, inequalities in access and coverage between and within the countries of the region have persisted and in some cases increased. These inequalities are systematically related to social factors including gender, socioeconomic status, ethnicity, income, and education, to name a few.

One of the main challenges to address social inequalities in health is the lack of strategic information and available evidence on the magnitude of the inequalities, either between or within countries. Currently, most LAC countries are not measuring or monitoring social inequalities in health at the national or local levels. Most national programs and interventions do not include indicators in their monitoring and evaluation frameworks (which fosters the reduction of inequalities).

EWEC-LAC has developed a toolkit that includes methodological orientations and tools for the measurement and monitoring of health inequities. It also provides technical support to institutionalize the measurement and monitoring of inequalities in national health information systems.

We are sure that technical staff from Ministries of Health, researchers, students and other global health actors interested in quantitative analysis of social inequalities will find this guide useful. The purpose of this material is to facilitate the measurement and monitoring of social inequalities in health, using a widespread program (Microsoft Excel ®). Assisted by examples, the reader will be able to calculate the simple measures (absolute and relative inequality gaps) and the complex ones (slope index of inequality and concentration index of health), if data disaggregated at the sub-national level is available.

A) Preliminary data preparation

The quality of the outcome analysis will result from data quality at the beginning. It is important to create a sound database including the three dimensions required for inequality analyses:

- 1. Health and morbimortality indicators: outcome variables
- 2. Equity stratifiers: socio-economic variables used to rank the population and define the groups whose health status is to be compared
- 3. Demographic variables: (usually the denominators of the health indicators) needed to calculate the weighting terms according to the population relative size

Some examples:

- 1. Health / morbimortality indicator: Maternal mortality ratio
- 2. Equity stratifier: mean years of schooling
- 3. Demographic variable: live births
- 1. Health / morbimortality indicator: Coverage of family planning modern methods
- 2. Equity stratifier: % of poor households
- 3. Demographic variable: women in reproductive age

The database should have separate spreadsheets for each dimension, and if needed, paired columns for data on two periods of time. A template of database for Excel is available at:

https://www.everywomaneverychild-lac.org/plantilla_de_datos/_____

Once the database is configured, descriptive statistics should be of help to "clean" it from potential mistakes and outliers, and to become acquainted with the data as well. For example, using the interquartile range, the standard deviation or a whiskers and box plot, it is possible to discover which health indicators hold low variability and will, therefore, be of little help to describe social inequalities. The variation coefficient (=standard deviation/ mean x 100) may be used to compare the variability of indicators, even if their units of measure are different.

It is important to identify which equity stratifiers are of nominal (those that do not follow an inherently ordered scale: sex, urban/rural location, ethnicity) or ordinal nature (those that follow a logically ordered scale: income, levels of education achieved, access to water and sanitation). The simple inequality measures allow both types of stratifiers, not the complex ones, restricted to ordinal equity stratifiers.

Type of stratifier	Example	Measures allowed
NOMINAL	Urban vs. rural population	 Absolute gap Relative gap
ORDINAL	% of analphabet population	 Absolute gap Relative gap Slope index of inequality Health concentration index

Before starting to practice, it is recommended to extract from the database like the one shown below, to follow the next steps easily.

	А	В	С	D
1		Health indicator	Health stratifier	Demographic weigthing
2	Demographic units (departments, provinces, minicipalities)	Year 1	Year 2	Year 3
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				

Once the data is arranged in the excel sheet, the procedure can be followed more easily.

B) Absolute and relative gaps of inequality with grouped data

a. Absolute and relative gaps of inequality with grouped data

Step Sort the data panel according to the equity stratifier (for ordinal stratifiers)

Whenever an ordinal equity stratifier is used, data should be ordered according to the stratifier's values. It is recommended to start top-bottom from the worst-off social situation to the best-off social situation. In some cases, like GDP per capita, the geographical units (also called observation units) with the highest values of the stratifier will lay on the bottom; on the opposite, geographical units with the highest value of the stratifier, like percentage of poor households, will be on top. The examples of the rest of the guide use ordinal stratifiers.

For nominal stratifiers, it is recommended that the selected reference group be placed at the bottom for convenience. Comparisons among the different subgroups formed by a nominal stratifier (i.e. ethnic groups) may be made as necessary.

(Next page)

-
_
9
Ę
Ś

1		t & Fhd &	Sort A to Z	S <u>o</u> rt Z to A	Custom Sort	Custom Sort	Displays the Sort enables sorting b	columns or rows, sorts, and others																			
1	- M	. Sor	Edit 2	N	2	₿ I	i¥ №	\$																			
	E AutoS	Clear			_																						
		e Format																									
	ň.	sert Delet	Cells		×																						
	ulation																										
	Calc	Note			-																						
	utral	ted Cell																									
	Ner	Ē			Ξ																						
	Good	Input	ries		9																						
		atory	Sty		ш																						
	Bad	Explan																									
	<u>a</u>	: Cell			ш																						
	Norm	Check				ths			~	~			~			_	2		9	_	_						
		I Format * as Table			٥	ive bir	2006	3,587	3,712	9,042	7,624	4,335	3,733	960'6	7,007	3,055	30,81	6,077	14,92	5,180	4,681	2,356	3,156				
	Na Na	Condition																									
	•	00. 00. 00.	12			c																					
	a	• %	Number			lletera																					
	Gener	\$9 }	Ø		c	omen i	2006	32.1	17.4	17.4	29.1	17.3	16.8	34.4	16.9	26.6	11.1	18.2	30.5	27.2	32.4	32.2	16				
	Text	e & Center				e of wo																					
		A Merg	ent			centag																					
<i>u</i> Viev	- R	Щ.	Alignm			Perc																					
Revier						ratio																					
s Data	ار بر ۱	, V	e			ortality	90	7.1	_	ω.	9.8	_	19	.07	m	÷	Ţ.	с.	5.4	e.	60.	.76	.31				
Formula	11 - /	\$ <mark>.</mark>				nal mo	20	137	0	55	10(0	80.	133	4	63	23	31	10(57	243	184	125				
e Layout		⊡ 1	Font	fx		Mater																					
Pag		7																									
ť	Calibr	-																									
e Insert	Calibr	at Painter B	Ø	ĺ	A		ts																				
Home Insert	K Cut Calibr	Format Painter	Clipboard 🔤	F17	A		Districts	A	В	C	D	ш	Ľ	9	т	_	_	×		Σ	z	0	Ь				

Sort							? 🗙
 ≥L <u>A</u> dd	Level	X <u>D</u> elete Level	Copy Level	Options	s	🚺 My da	ita has <u>h</u> eaders
Column			Sort On		Order		
Sort by	2006	-	Values	-	Largest t	o Smallest	-
					_		
						OK	Cancel

	А	В	С	D
1				
2		Maternal mortality ratio	Percentage of women illeteracy	Live births
3	Districts	2006	2006	2006
4	G	133.07	34.4	9,096
5	N	243.09	32.4	4,681
6	0	184.76	32.2	2,356
7	Α	137.1	32.1	3,587
8	L	106.4	30.5	14,926
9	D	100.8	29.1	7,624
10	Μ	57.3	27.2	5,180
11	1	63.1	26.6	3,059
12	К	31.3	18.2	6,077
13	В	0	17.4	3,712
14	С	55.3	17.4	9,042
15	E	0	17.3	4,335
16	Н	43	16.9	7,007
17	F	80.19	16.8	3,733
18	Р	125.31	16	3,156

12

Group data using quantiles of the social stratifier

Step

2

Depending on the number of geographical units and the heterogeneity of the equity stratifier, population groups generically named quantiles can be formed. Three groups would be "terciles," four, "quartiles"; five, "quintiles"; ten, "deciles" and so on.

This example uses quintiles, which means that the distribution of the stratifier finds cut points at percentiles 20, 40, 60 and 80, denoted by P.20, P.40, P.60, P.80.

Groups (quintiles in this example) are formed as follows:

- If the stratifier is bottom-top sorted
 - o Group 1 (socially worst-off): units with values of the stratifier less or equal to P.20
 - o Group 2: units with values of the stratifier higher than P.20, but less or equal to P.40
 - o Group 3: units with values of the stratifier higher than P.40, but less or equal to P.60
 - o Group 4: units with values of the stratifier higher than P.60, but less or equal to P.80
 - o Group 5 (socially best-off): units with values of the stratifier higher than P.80
- If the stratifier is top-bottom sorted:
 - o Group 1 (socially worst-off): units with values of the stratifier higher than P.80
 - o Group 2: units with values of the stratifier higher than P.60, but less or equal to P.80
 - o Group 3: units with values of the stratifier higher than P.40, but less or equal to P.60
 - o Group 4: units with values of the stratifier higher than P.20, but less or equal to P.40
 - o Group 5 (socially best-off): units with values of the stratifier less or equal to P.20

(Next page)

G4 ← Jx =PE						
А						
	В	С	D	Е	щ	ŋ
Mate	ernal mortality ratio	Percentage of women illeteracy	Live births			
Districts	2006	2006	2006	Quintile (group)	Percentile (x)	Cut-off point
	133.07	34.4	9006	1	1	1
	243.09	32.4	4681	2	0.8	32.1
	184.76	32.2	2356	m	0.6	27.2
	137.1	32.1	3587	4	0.4	17.4
	106.4	30.5	14926	S	0.2	16.9
	100.8	29.1	7624			
	57.3	27.2	5180			
	63.1	26.6	3059			
	31.3	18.2	6077			
	0	17.4	3712			
	55.3	17.4	9042			
	0	17.3	4335			
	43	16.9	7007			
	80.19	16.8	3733			
	125.31	16	3156			
	23.1	11.1	30812			

Note. In the case of counting with less than ten geographical units, it is advisable not to group data and effect pairwise comparisons among the socially worst and best-off units

Step-by-step guide | Gradient-based measures of social inequality in health.

Step 2

14

Step 3 🕨

Calculate the population of each group

Example:

Е	opulation of each group				16133	3		26137			14316			17089				44708	
D	Live births	2006	9006	4681	2356 🔮	3587	14926	7624	5180	3059	6077	3712	9042	4335	7007	3733	3156	30812	
C	Percentage of women illeteracy	2006	34.4	32.4	32.2	32.1	30.5	29.1	27.2	26.6	18.2	17.4	17.4	17.3	16.9	16.8	16	11.1	
B Formula Bar	Maternal mortality ratio	2006	133.07	243.09	184.76	137.1	106.4	100.8	57.3	63.1	31.3	0	55.3	0	43	80.19	125.31	23.1	
A	2	3 Districts	4 G	5 N	6 0	7 A	8 8	0 D	10 M	11	12 K	13 B	14 C	15 E	16 H	17 F	18 P	19 J	

=SUM(range of the population data)

Excel syntax

15

Step 4 🕨

Calculate the population weight of each geographical unit within each group

Example:

ц	Weight of each district within its group		0.563813302	0.290150623	0.146036075	0.137238398	0.571067835	0.291693767	0.361832914	0.213677005	0.424490081	0.217215753	0.529112294	0.253671953	0.156728102	0.083497361	0.070591393	0.689183144	
Э	Population of each group				16133			26137			14316			17089				44708	
D	Live births	2006	9606	4681	2356	3587	14926	7624	5180	3059	6077	3712	9042	4335	7007	3733	3156	30812	
С	Percentage of women illeteracy	2006	34.4	32.4	32.2	32.1	30.5	29.1	27.2	26.6	18.2	17.4	17.4	17.3	16.9	16.8	16	11.1	
B	Maternal mortality ratio	2006	133.07	243.09	184.76	137.1	106.4	100.8	57.3	63.1	31.3	0	55.3	0	43	80.19	125.31	23.1	
A	2	3 Districts	4 G	N	6 0	7 A	8 L	9 D	10 M	11	12 K	13 B	14 C	15 E	16 H	17 F	18 P	19 J	20

=Population of each unit / population of the whole group

Excel syntax

Step 5 🕨

Calculate the component of the weighted average of the health indicator for each geographical unit (observa-tion unit)

Example:

	AB	С	D	Е	F	Ð
					Weight of each district within its	Component of the weighted average of
č	Maternal mortality ratio	Percentage of women illeteracy	Live births	Population of each group	group	MMR
Sin U	133.07	34.4	9096		0.564	=F4*B4
z	243.09	32.4	4681		0.290	70.5
0	184.76	32.2	2356	16133	0.146	26.9
٨	137.1	32.1	3587		0.137	18.8
_	106.4	30.5	14926		0.571	60.7
٥	100.8	29.1	7624	26137	0.292	29.4
Σ	57.3	27.2	5180		0.362	20.7
_	63.1	26.6	3059		0.214	13.4
¥	31.3	18.2	6077	14316	0.424	13.2
8	0	17.4	3712		0.217	0.0
U	55.3	17.4	9042		0.529	29.2
ш	0	17.3	4335	17089	0.254	0.0
Т	43	16.9	7007		0.157	6.7
ш	80.19	16.8	3733		0.083	9.9
۵	125.31	16	3156		0.071	8.8
_	23.1	11.1	30812	44708	0.689	15.9

Excel syntax

18

Calculate the weighted average of the health indicator for each group

Example:

AMaterial motality ratioMeric from the fraction of each f	т	RMM weighted average			=SUM(G4:G6)		108.980			47.503			29.260			FOL BL	38.201	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	U	Component of the weighted average of MMR	75.027	70.533	26.982	18.815	60.762	29.403	20.733	13.483	13.287	0.000	29.260	0.000	6.739	6.696	8.846	15.920
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LL.	Weight of each district within its group	0.564	0.290	0.146	0.137	0.571	0.292	0.362	0.214	0.424	0.217	0.529	0.254	0.157	0.083	0.071	0.689
A Matemal mortality ratio Percentage of women lifeteracy Live births Districts 2006 2006 2006 2006 13307 3300 344 9056 2006 13307 344 9056 2006 13307 324 446 9056 1371 321 324 4661 1371 321 321 355 1371 321 324 4661 1371 321 321 355 1371 321 321 355 1371 321 324 466 1064 313 317 4356 1063 313 312 14926 313 132 312 14926 313 132 132 14936 313 132 132 14936 313 132 132 14936 313 132 132 14335 3146 168 <th>ш</th> <th>Population of each group</th> <td></td> <td></td> <td>16133</td> <td></td> <td></td> <td>26137</td> <td></td> <td></td> <td>14316</td> <td></td> <td></td> <td>17089</td> <td></td> <td></td> <td></td> <td>44708</td>	ш	Population of each group			16133			26137			14316			17089				44708
A B B Comparison Compar	D	Live births	9096	4681	2356	3587	14926	7624	5180	3059	6077	3712	9042	4335	7007	3733	3156	30812
A B Alaternal mortality ratio Districts Maternal mortality ratio 2006 133.07 233.09 137.1 137.1 137.1 137.1 137.1 136.4 137.1 106.4 137.1 106.4 137.1 106.4 137.1 106.4 137.1 106.4 137.1 106.4 137.1 106.4 137.1 106.8 57.3 63.1 63.1 21.3 137.1 106.8 106.8 106.8 106.8 1000	J	Percentage of women illeteracy	2005 34.4	32.4	32.2	32.1	30.5	29.1	27.2	26.6	18.2	17.4	17.4	17.3	16.9	16.8	16	11.1
Districts	æ	Maternal mortality ratio	133.07	243.09	184.76	137.1	106.4	100.8	57.3	63.1	31.3	0	55.3	0	43	80.19	125.31	23.1
0 8 4 9 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A	Z		Z	0	7 A	8	9 D	M O	1 -	2 K	3 B	4 C	5 E	(6 H	2 F	80 P	[6]

Excel syntax

+ (= X ✓ ∱ =SUM(G4:G6)

SUM

StepCalculate and interpret the absolute gap comparing group 1 and group 57Example:

Groups	Weighted average of each group	Absolute gap (G1-G5)
G1	172.5	
G2	109.0	
G3	47.5	172.5-38.2 = 134.3
G4	29.3	
G5	38.2	

Interpretation: For the data in the example, for that country in that year, there were 134.3 more maternal deaths per 100,000 live births in the group with the lowest educational status, compared to the group with the highest educational status. In other words, the absolute gap expresses the magnitude difference of mortality experience between the worst-off and best-off educational status.

Step 8

Calculate and interpret the relative gap comparing group 1 and group 5

Example:

Groups	Weighted average of each group	Absolute gap (G1/G5)
G1	172.5	
G2	109.0	
G3	47.5	172.5/38.2 = 4.5
G4	29.3	
G5	38.2	

Interpretation: For the data in the example, for that country in that year, maternal mortality ratio in the group with the lowest educational status was 4.5 times that of the group with the highest educational group. In other words, the mortality experience of the socially most disadvantaged group was more than four times that of the least socially disadvantaged group.

Step
9Using data available on two periods of time: four scenarios of
performance

When data two periods of time are available, once the calculation of inequality gaps for each period is done as well as having the national-level figure of the health indicator, it is recommended to compare those findings with the following four scenarios. The four scenarios analysis elaborates on the performance of the country regarding not only the health indicator by itself but in parallel to the inequality gaps.

CHANGE OF THE INEQUALITY MEASURE

	_	NARROWING	WIDENING
POPULATION- WIDE CHANGE IN THE HEALTH/	IMPROVING	The best result	Improvement with inequality: health indicator improved among the most privileged, not necessarily among the most socially deprived
INDICATOR	WORSENING	Worsening with protection: health advances in the socially deprived helped reduce the inequality gap, but the overall health indicator worsened in the period	The worst result

Step-by-step guide | Gradient-based measures of social inequality in health.

C) Gradient measures of social inequality in health

a. Slope index of inequality for non-grouped data

For this regression-based measure, it is recommended to leave the data nongrouped to gain statistical power, especially when the geospatial units are a few.

(Next page)

-
2
Ð
-
S

Example:

degraphic but but but but butHealth indicator but but but but but butHealth indicator but <b< th=""><th></th><th>A</th><th>B</th><th>С</th><th>D</th><th>ш</th><th>ш</th><th>ŋ</th><th>н</th></b<>		A	B	С	D	ш	ш	ŋ	н
	.	Geographical unit	Health indicator	Population	Equity stratifer	Relative frequency	Cumulative frequency (cwPob)	RIDIT (X)	Weight (W)
	2	District	Maternal mortality ratio (MMR)	Live births	Women illiteracy				
	3 A		137.1	3,587	32.1				
	4 B		0.0	3,712	17.4				
	2		55.3	9,042	17.4				
	9	-	100.8	7,624	29.1				
	7 E		0.0	4,335	17.3				
	8		80.2	3,733	16.8				
	6	(5)	133.1	960'6	34.4				
	10 H	_	43.0	7,007	16.9				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11		63.1	3,059	26.6				
	12 J		23.1	30,812	11.1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13 K		31.3	6,077	18.2				
15 M 57.3 5,180 27.2 16 N 243.09 4,681 32.4 16 N 243.09 4,661 32.4 17 O 184.76 2,356 32.2 18 P 123.1 3,156 16	14 L		106.4	14,926	30.5				
	15 N	V	57.3	5,180	27.2				
17 0 18.76 2,356 32.2 0 18 P 125.31 3,156 16 2 19 Total =SUM(C3:C18) 16 2 2	16 N	-	243.09	4,681	32.4				
18 P 125.31 3,156 16 19 Total =SUM(C3:C18)	17 0	•	184.76	2,356	32.2				
19 Total =SUM(C3:C18)	18 P		125.31	3,156	16				
	19 T	otal		SUM(C3:C18)					

Sorting based on the equity stratifier

Select the range of data to be sorted. Go to Data menu Sort, and select to sort by the stratifier column. Choose the sorting criterion to have the geographical units with the socioeconomically worst-off on top of the list.

Copy *	anon 'II 'A A = = = = = = = = = = = = = = = = =	◆・ 書 録 Merge & Center ▼ Alignment	General Entropy No \$ ~ \% \$ - __000 \$ Conditional Formatting as Table * Image: Conditional Formatting * Image: Conditional Formatting *	mal Bad eck Cell Explanatory Sty	Good N Input Lii	eutral L	alculation	Insert Delete Format Cells	🖉 Fill -	Sort Frite diting
A3 •	6 f. A									
A	8	J	D	ш	LL.	9	т	_	_	×
Geographical unit	Health indicator	Population	Equity stratifer	Relative frequency	Cumulative frequency (cwPob)	RIDIT (X)	Weight (W)			
District	Maternal mortality ratio (MMR)	Live births	Women illiteracy							
	137.1	3,587	32.1							
	0.0	3,712	17.4							
	55.3	9,042	17.4							
	100.8	7,624	29.1	Sort				80		
	0.0	4,335	17.3	031≜dd Level	X Delete Level	apy Level	P Options	My data has header	2	
	80.2	3,733	16.8	Colum	Sorti		Order			
	133.1	960'6	34.4	Sort by Column	D Value	. ,	Iaroest to	Smallest		
	43.0	7,007	16.9						1	
	63.1	3,059	26.6							
	23.1	30,812	11.1							
	31.3	6,077	18.2							
	106.4	14,926	30.5							
	57.3	5,180	27.2				l			
	243.09	4,681	32.4					OK Cancel		
	184.76	2,356	32.2							
	125.31	3,156	16							
		110 202								

Calculation of relative and cumulative frequency

Relative frequency: add up the population of all the geographical units (store in a cell at the bottom) and then divide this by the population of each unit (in the relative frequency cell). You may "fix" the cell of the population total using the "\$" sign as in the example.

	-	U	Q		u	U	Ŧ	_	-
seographical unit	Health indicator	Population	Equity stratifer	Relative frequency	Cumulative frequency (cwPob)	RIDIT (X)	weight (w)	M*X	M*Y
District	Maternal mortality ratio (MMR)	Live births	Women illiteracy						
	133.1	960'6	34.4	=C3/C\$19	0.077				
	243.09	4,681	32.4	0.040	0.116				
	184.76	2,356	32.2	0.020	0.136				
	137.1	3,587	32.1	0:030	0.167				
	106.4	14,926	30.5	0.126	0.293				
	100.8	7,624	29.1	0.064	0.357				
	57.3	5,180	27.2	0.044	0.401				
	63.1	3,059	26.6	0.026	0.427				
	31.3	6,077	18.2	0.051	0.478				
	0.0	3,712	17.4	0.031	0.509				
	55.3	9,042	17.4	0.076	0.586				
	0.0	4,335	17.3	0.037	0.622				
	43.0	7,007	16.9	0.059	0.682				
	80.2	3,733	16.8	0.032	0.713				
	125.31	3,156	16	0.027	0.740				
	23.1	30,812	1.11	0.260	1.000				
ta		118,383		1.000					

26

Calculation of relative and cumulative frequency

frequencies of each unit. The cumulative frequency of the first unit will be its relative frequency. For the second unit, it will be cumulative of the first plus the relative of the second. For the third, the cumulative frequency will be cumulative of the second plus the relative of the third, and so on. Once entering the syntax in the second row (as in the example), you may copy top Cumulative frequency = cwpob (short name for relative cumulative frequency): make a consecutive sum of the relative down to the rest. As a way of testing, the value of the last unit will always have to equal one (1.0).

SUM	◆ (* × く ∱ =E4+F3)	-		_					
A	B	U	D	ш	L	9	Ξ	-	-
raphical Init	Health indicator	Population	Equity stratifer	Relative frequency	Cumulative frequency (cwPob)	RIDIT (X)	Weight (W)	M*X	M∗γ
strict	Maternal mortality ratio (MMR)	Live births	Women illiteracy						
	133.1	960'6	34.4	0.077	0.077				
	243.09	4,681	32.4	0.040	=E4+F3				
	184.76	2,356	32.2	0.020	0.136				
	137.1	3,587	32.1	0:030	0.167				
	106.4	14,926	30.5	0.126	0.293				
	100.8	7,624	29.1	0.064	0.357				
	57.3	5,180	27.2	0.044	0.401				
	63.1	3,059	26.6	0.026	0.427				
	31.3	6,077	18.2	0.051	0.478				
	0.0	3,712	17.4	0.031	0.509				
	55.3	9,042	17.4	0.076	0.586				
	0.0	4,335	17.3	0.037	0.622				
	43.0	7,007	16.9	0.059	0.682				
	80.2	3,733	16.8	0.032	0.713				
	125.31	3,156	16	0.027	0.740				
	23.1	30,812	11.1	0.260	1.000				
		118,383		1.000					

3 1 1

Calculation of the RIDIT (cumulative frequency in the center of the distribution corresponding to each geographical unit)

RIDIT is half of the sum of two consecutive cumulative frequencies. For the first unit, the RIDIT will be half of its cumulative frequency, considering that there is no previous frequency to sum. For the second unit, the RIDIT will be the sum of the cumulative frequency of the first plus the cumulative frequency of the second, divided by two.

8		C	D	ш	u.	U	т	_	-
Health indicator		Population	Equity stratifer	Relative frequency	Cumulative frequency (cwPob)	RIDIT (X)	weight (w)	M*X	₩*Y
Maternal mortality ratio	o (MMR)	Live births	Women illiteracy						
	133.1	960'6	34.4	0.077	0.077	0.038			
	243.09	4,681	32.4	0.040	0.116	=(F3+F4)/2			
	184.76	2,356	32.2	0.020	0.136	0.126			
	137.1	3,587	32.1	0.030	0.167	0.151			
	106.4	14,926	30.5	0.126	0.293	0.230			
	100.8	7,624	29.1	0.064	0.357	0.325			
	57.3	5,180	27.2	0.044	0.401	0.379			
	63.1	3,059	26.6	0.026	0.427	0.414			
	31.3	6,077	18.2	0.051	0.478	0.452			
	0.0	3,712	17.4	0.031	0.509	0.494			
	55.3	9,042	17.4	0.076	0.586	0.548			
	0.0	4,335	17.3	0.037	0.622	0.604			
	43.0	7,007	16.9	0.059	0.682	0.652			
	80.2	3,733	16.8	0.032	0.713	0.697			
	125.31	3,156	16	0.027	0.740	0.726			
	23.1	30,812	1.11	0.260	1.000	0.870			
		118,383		1.000					

27

Calculation of the population weight and apply it to both, health indicator and RIDIT

The weight of each unit equals the square-root of its population. In Excel, you may use the syntax "SQRT" as seen in the example.

	_			_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	-	W*Y		=H3*B3	16631.7	8968.0	8211.1	12999.1	8801.4	4124.0	3489.9	2440.0	0.0	5258.4	0.0	3599.4	4899.5	7039.7	4054.8		
	-	W*X		0.0	6.6	6.1	9.1	28.1	28.4	27.3	22.9	35.3	30.1	52.1	39.8	54.6	42.6	40.8	152.7		
	н	weight (w)		95.4	68.4	48.5	59.9	122.2	87.3	72.0	55.3	78.0	6.09	95.1	65.8	83.7	61.1	56.2	175.5		
	9	RIDIT (X)		0.0	0.1	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.5	0.5	0.6	0.7	0.7	0.7	0.9		
	L	Cumulative frequency (cwPob)		0.1	0.1	0.1	0.2	0.3	0.4	0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.7	1.0		
	ш	Relative frequency		0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.3	1.000	
	D	Equity stratifer	Women illiteracy	34.4	32.4	32.2	32.1	30.5	29.1	27.2	26.6	18.2	17.4	17.4	17.3	16.9	16.8	16	11.1		
	C	Population	Live births	9,096	4,681	2,356	3,587	14,926	7,624	5,180	3,059	6,077	3,712	9,042	4,335	7,007	3,733	3,156	30,812	118,383	
	B	Health indicator	Maternal mortality ratio (MMR)	133.1	243.09	184.76	137.1	106.4	100.8	57.3	63.1	31.3	0.0	55.3	0.0	43.0	80.2	125.31	23.1		
	A	Geographical unit	District	U	z	0	A		٩	Σ	-	×		U	ш	H	L	P	-	Total	
1		-	2	m	4	S	9	7	00	σ	10	1	12	10	14	15	16	E	18	15	20

Afterward, two columns should be added:

- X*W: will store the product of the population weight and the RIDIT, namely the weighted values of the RIDIT (X). For the regression model in Excel, this is X2, the independent variable of interest.
 - Y*W: will store the product of the population weight and the health indicator, namely the weighted values of the health indicator (Y). For the regression model in Excel, this is Y, the dependent variable of interest.

Note: weights must be inputted this way because Excel lacks weighted minimum square estimation for regression analyses. The model adjusted is:

$YW = \beta_o (0) + \beta_1 (W) + \beta_2 (WX)$

Regarding Excel: "W" of the model is X1, and "WX" of the model is X2. That is why the slope coefficient of interest in the next step will be that of X2

S
e
Š

	8	U	Q	ш	u.	U	H	_	-
Geographica 1 unit	Health indicator	Population	Equity stratifer	Relative frequency	Cumulative frequency (cwPob)	RIDIT (X)	Weight (W)	W*X	₩*Y
2 District	Maternal mortality ratio (MMR)	Live births	Women illiteracy						
5 m	133.1	9,096	34.4	0.1	0.1	0.0	95.4	=H3*G3	12691.3
4 N	243.09	4,681	32.4	0.0	0.1	0.1	68.4	6.6	16631.7
5 0	184.76	2,356	32.2	0.0	0.1	0.1	48.5	6.1	8968.0
6 A	137.1	3,587	32.1	0.0	0.2	0.2	59.9	9.1	8211.1
7 L	106.4	14,926	30.5	0.1	0.3	0.2	122.2	28.1	12999.1
80 D	100.8	7,624	29.1	0.1	0.4	0.3	87.3	28.4	8801.4
9 M	57.3	5,180	27.2	0.0	0.4	0.4	72.0	27.3	4124.0
10	63.1	3,059	26.6	0.0	0.4	0.4	55.3	22.9	3489.9
11 K	31.3	6,077	18.2	0.1	0.5	0.5	78.0	35.3	2440.0
12 B	0.0	3,712	17.4	0.0	0.5	0.5	6.09	30.1	0.0
13 C	55.3	9,042	17.4	0.1	0.6	0.5	95.1	52.1	5258.4
14 E	0.0	4,335	17.3	0.0	0.6	0.6	65.8	39.8	0.0
15 H	43.0	7,007	16.9	0.1	0.7	0.7	83.7	54.6	3599.4
16 F	80.2	3,733	16.8	0.0	0.7	0.7	61.1	42.6	4899.5
17 P	125.31	3,156	16	0.0	0.7	0.7	56.2	40.8	7039.7
18 J	23.1	30,812	11.1	0.3	1.0	0.9	175.5	152.7	4054.8
19 Total		118.383		1.000					

30

Estimation of the regression coefficients

In the Data menu, go to Data Analyses. In case this does not appear on the user's computer, consult Annex 1 for the installation of the required complement.

Next, select Regression. In the "Regression" window input the range of data of the column W*Y in "Y range of input." Then click on 🛐 and select the range of both columns: Weight (W) and Weighted RIDIT (X*W). Check the option "Constant equals zero" and select the output preferences as wanted.

In the Excel output, the X2 slope coefficient corresponds to the slope index of inequality.

				cientific data		ip.	12691.3	16631.7	8968.0	8211.1	12999.1	8801.4	4124.0	3489.9	2440.0	0.0	5258.4	0.0	3599.4	4899.5	7039.7	4054.8			
	alysis	5	sis Tools	financial and s	are -	1 for add-in he	3.7	6.6	6.1	9.1	28.1	28.4	27.3	22.9	35.3	30.1	52.1	39.8	54.6	42.6	40.8	152.7			
	Solver	Analysi	Data Analy	Tools for	analysis.	Press F	95.4	68.4	48.5	59.9	122.2	87.3	72.0	55.3	78.0	6.09	95.1	65.8	83.7	61.1	56.2	175.5			
		3			Weig		ĺ																		
4	Hide D			9	RIDIT (X)		0.0	0.1	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.5	0.5	0.6	0.7	0.7	0.7	0.9			
	Group Ungroup Subtot	Outline		L	Imulative frequency		0.1	0.1	0.1	0.2	0.3	0.4	0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.7	1.0			
	Consolidate What-If			ш	Relative Cu fromory		0.1	0.0	0:0	0.0	0.1	0.1	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.3	1.000		
	Text to Remove Data (Columns Duplicates Validation •	Data Iools		D	uity stratifer	nen illiteracy	34.4	32.4	32.2	32.1	30.5	29.1	27.2	26.6	18.2	17.4	17.4	17.3	16.9	16.8	16	11.1			
ew View	24 24 Clear 24 Sort Filter 26 Reapply 24 Sort Filter 20 Advanced	SOLT & Filter		C	ulation Equ	births Wor	960	,681	,356	,587	1,926	,624	180	,059	220	712	,042	,335	,007	733	156),812	8,383		
Revie	tions ks				Popu	Live	6	4,6	2,3	e,	14,	7,0	5,	3,6	6,0	e,	9'6	4,5	7,0	e,	с" С	30,	118		
Formula	Refresh Edit Lir	Connections	C1+D		icator	v ratio (MMR)	133.1	243.09	184.76	137.1	106.4	100.8	57.3	63.1	31.3	0.0	55.3	0.0	43.0	80.2	125.31	23.1			
rt Page Layout	m Other Existing	il Data		8	Health indì	Maternal mortality																			
Home Inse	n From From	Get Externa		A	raphical nit	strict																			
File	From From Access Web		Ĩ	-	Geogr	2 Dis	е В	4 N	5 0	6 A	7 L	80 D	9 M	10	11 K	12 B	13 C	14 E	15 H	16 F	17 P	18 J	19 Total	20	

Step ? **X** Data Analysis 6 Analysis Tools OK F-Test Two-Sample for Variances ٠ Fourier Analysis Cancel Histogram Moving Average Random Number Generation Help Rank and Percentile Ε Sampling t-Test: Paired Two Sample for Means Ŧ t-Test: Two-Sample Assuming Equal Variances

regression		
Input <u>Y</u> Range:	\$]\$3:\$]\$18	OK Cancel
Input <u>X</u> Range:	\$H\$3:\$I\$18	Help
Labels	Constant is Zero	
Confidence Level:	95 %	
Qutput Range: Cutput Range: New Worksheet Ply: New Workbook Residuals Residuals	Recidual Plote	
Standardized Residuals	Line Fit Plots	
Normal Probability Plots		

	А	В	С	D	E	F	G	н	I.
1	SUMMARY OUTPUT								
2									
3	Regression St	atistics							
4	Multiple R	0.920303424							
5	R Square	0.846958392							
6	Adjusted R Square	0.764598277							
7	Standard Error	3302.521423							
8	Observations	16							
9									
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	2	845029514	4.23E+08	38.7392	3.33496E-06			
13	Residual	14	152693068.5	10906648					
14	Total	16	997722582.5						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
17	Intercept	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
18	X Variable 1	149.4576424	19.35422664	7.722222	2.06E-06	107.9469548	190.9683301	107.9469548	190.9683301
19	X Variable 2	-154.9763358	33.61284893	-4.61063	0.000404	-227.0687268	-82.88394491	-227.0687268	-82.88394491

Interpretation of the index slope of inequality

For the data in the example, for that country in that year, there were 154 more maternal deaths per 100,000 live births among the most illiterate populations compared to the least illiterate populations considering the information of all the geographical units, and their population weights.

The sign in the slope index of inequality is frequently negative with impact health indicators, indicating that the left section of the distribution (socially worst-off units) shows higher levels of the indicator (i.e. maternal mortality) than the right section (socially best-off units). Thus the regression line displays a negative slope. The inverse usually happens with coverage health indicators. So, the slope index compares the socially best-off population with the socially worst-off; the inverse happens with the absolute gap of inequality, which is the reason why multiplying the slope index of inequality times (-1) allows the comparison in the same terms of the absolute gap.

In the statistical sense, the index will be negative (<0) whenever there is an inverse relationship between the health outcome and the RIDIT.

The magnitude of the index equals the absolute inequality (in this case, the difference) of maternal mortality ratio between the population with the highest and lowest analphabetism levels.

b. Slope index of inequality for grouped data

Step 1

Step 7

Construction of a table with the following columns, using the results obtained from the gap measures of inequality:

1) Group number

2) Group population

3) Relative frequency

4) Cumulative frequency5) RIDIT

Example:

Group number	Group population	Relative frequency	Cumulative frequency	RIDIT
1	2833			
2	2547			
3	6764			
4	5934			
5	908			

Step Calculation of the relative frequency for each group

Add up the population of all the groups, which will give the total population. Each group's population divided by the total population will give each group's relative frequency.

Example:

	SUM	√ → ★ ✓ f _x =B2/B\$7				
	А	В	С	D	E	
1	Group number	Group population	Relative frequency	Cumulative frequency	RIDIT	
2	1	16133	=B2/B\$7			
3	2	26137	0.221			
4	3	14316	0.121			
5	4	17089	0.144			
6	5	44708	0.378			
7		118383				
0			T			

Step

3

2

Calculation of the cumulative frequency for each group

Example:

Excel

syntax

	SUM	$- \left \begin{array}{c} \bullet & \times & \checkmark & f_x \\ \hline \end{array} \right =$	D2+C3			
	А	В	С	D	E	
1	Group number	Group population	Relative frequency	Cumulative frequency	RIDIT	
2	1	16133	0.136	0.136		ľ
3	2	26137	0.221	=D2+C3		ĺ
4	3	14316	0.121	0.478		
5	4	17089	0.144	0.622		
6	5	44708	0.378	1.000		
7		118383				

= GROUP POPULATION/ TOTAL POPULATION

Excel syntax

= relative frequency of each group + cumulative frequency of the previous group

Note: The cumulative for the first group will be its relative frequency. For the second and next groups, add the cumulative frequency of its previous one plus its relative frequency.

Step Calculation of the RIDIT for each group

Example:

4

	SUM	▼ (= X ✓ f _x =	(D3+D2)/2		
	А	В	С	D	E
1	Group number	Group population	Relative frequency	Cumulative frequency	RIDIT
2	1	16133	0.136	0.136	0.068
3	2	26137	0.221	0.357	=(D3+D2)/2
4	3	14316	0.121	0.478	0.418
5	4	17089	0.144	0.622	0.550
6	5	44708	0.378	1.000	0.811
7		118383			
-					

Excel syntax = (cumulative frequency of each group + cumulative frequency of the previous group) / 2

Note: The RIDIT for the first group will be the cumulative frequency of the first group divided by half. For the second and following groups, sum up the cumulative frequency of the previous one plus the cumulative frequency of itself and divide the result by two

Step 5

Construction of a 7-column table

Example:

				-			
	А	В	С	D	E	F	G
1	Group number	Y	х	Group population	w	W*X	W*Y
2	1	172.5	0.07	16133	127.0	8.7	21915.4
3	2	109.0	0.25	26137	161.7	39.9	17618.7
4	3	47.5	0.42	14316	119.6	50.0	5683.7
5	4	29.3	0.55	17089	130.7	71.9	3825.0
6	5	38.2	0.81	44708	211.4	171.5	8077.3
7				118383			

Excel syntax **To calculate the square root:** =RSQRT(each group population)

Note:

Group: number of each group (depends on the number of quantiles used) Y: health indicator for each group (obtained as in step 6 of the gaps measures) X: RIDIT of each group

Group population

W: the population weight (Square root of the population of each group) W*X: weighted RIDIT (the product of weight times the RIDIT of each group) W*Y: weighted health indicator (the product of weight times the health indicator of each group)

Step 6 🕨

Calculation of the slope index of inequality using Excel

Follow: DATA → Data analyses → Regression

DIn the "Regression" window input the range of data of the column W*Y in "Y range of input." Then click on and select the range of both columns: Weight (W) and Weighted RIDIT (X*W). Check the option "Constant equals zero" and select the output preferences as wanted.

On the Excel output, the X2 slope coefficient corresponds to the slope index of inequality.

Note 1: In case "Data Analyses" does not appear in your computer's menu, consult Annex 1 for the installation of the required complement.

	d	;
	Ω	2
	2	
	π	5
1	?	ì
	_	

	_		_								_				_
	Conver		Analysis	Data Analysis Tools	Tools for financial and scientific data	analysis.	🎲 FUNCRES	Press F1 for add-in help.							
	Q		12		z										
		oup Subtotal	Outline		Σ										
		Group Ungr			_										
		idate What-If Analysis v			×										
		Data Consol dation *	ata Tools		_										
		Remove Duplicates Vali	Ő		-										
		Ed Columns			н										
	K Clear	er y Advance	Filter		9		Y*W	21915.4	17618.7	5683.7	3825.0	8077.3			
View	ZZ	Sort Filt	Sort &		LL.		X*W	8.7	39.9	50.0	71.9	171.5			
Review	lections 24	inks Z	S		ш		>	127.0	161.7	119.6	130.7	211.4			
omulas Data	Conr	s All Sedit L	Connection	UM(D2:D6)	D		o population	16133	26137	14316	17089	44708	118383		
Page Layout		r Existing Connection:		<i>fx</i> =S			Group	7	5	2	2	1			
Insert	[]	From Othe Sources *	ernal Data	•	U		×	5 0.0	0 0.2	5 0.4	3 0.5	2 0.8			
tome	*	From	Get Ext.		8		>	172.	109.4	47.	1 29.	38.			
H H		ess Web		D7	A	Group	number	1	2	3	4	5			
- L	¥	Aco					-	2	m	4	S	9	4	00	

Analysis Tools F-Test Two-Sample for Fourier Analysis Histogram Moving Average Random Number Genera Rank and Percentile Regression Sampling t-Test: Paired Two Sam t-Test: Two-Sample Ass	Variances OK ation Help
Regression Input Input Y Range: Input X Range: Labels Labels Confidence Level: Output options Qutput Range: New Worksheet Ply: New Workbook Residuals Residuals Standardized Residuals Normal Probability Normal Probability Plots	\$G\$2:\$G\$6 \$E\$2:\$F\$6 \$E\$2:\$F\$6 Cancel Description P5 %

36

Step 6 🕨

A B C D E F SUMMARY OUTPUT SumMary OUTPUT E F F Regression Statistics Multiple F 0.93435417 E F F Multiple F 0.93435011 F Statistics E F F F Multiple F 0.93435011 F Statistics F Statistics F Statistics Multiple F 0.93435011 F Statistics F Statistics F Statistics Adjusted 0.565580014 F Statistics F Statistics F Statistics Adjusted 0.565580014 F Statistics F Statistics F Statistics Adjusted 0.565580014 F Statistics F Statistics Statistics F Statistics Statistics F Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistatis	H 9									ICE F	3757			5% Upper 95% Lower 95.0% Upper 95.0%	A/N# A/N# A/N#	77079 240.5928438 58.79937079 240.5928438	3.419489504 -314.3260207 3.419489504
A B C D E SUMMARY OUTPUT E C D E E Regression Statistics Multiple F 0.934185011 P F E	ш									Significan	0571 0.05185			ue Lower 95	A #N/A	1428 58.7993	1913 -314.326
A B C SUMMARY OUTPUT C C SUMMARY OUTPUT Fegression Statistics C Multiple F 0.961345417 F R Square 0.924185011 F Adjusted 0.565580014 F Adjusted 0.55580014 F Adjusted 0.55580014 F Adjusted 0.56379355 A Regressio 3 604519355 Adjusted 149.6961073 F Numercept Adjosted A Adjosted Adjosted A	D									MS F	7214678.4 18.2850	2817311.9		t Stat P-valı	//N# V/N#	241110317 0.01352	13949087 0.0527
A B SUMMARY OUTPUT Regression Statistics Multiple F 0.961345417 R Square 0.924185011 Adjusted 0.555580014 Standard i 4776.747 Observati 5 ANOVA df	C									SS	834429356.8 41	68451935.7 2	902881292.5	Standard Error	#N/A	28.56190735 5.2	49.92158229 -3.1
A SUMMARY Regression Multiple F R Square Adjusted i Standard i Observati ANOVA ANOVA ANOVA Regressio Residual Total Total	۵	OUTPUT	on Statistics	0.961345417	0.924185011	0.565580014	4776.747	5		df	2	e	5	Coefficients 5	0	149.6961073	-155 4532656
	A	SUMMARY	Regressic	Multiple F	R Square	Adjusted I	Standard (Observati	ANOVA		Regressio	Residual	Total		Intercept	X Variable	X Variahle

Nota2:

El índice de la pendiente se debe calcular utilizando el Método de Mínimos Cuadrado Ponderados. Como EXCEL no tiene incorporado este método y solo el Método de Mínimos Cuadrados Ordinarios, se hace necesario calcular las nuevas variables: W, X*W & Y*W y usar estas con EXCEL para obtener los resultados deseados

Columna Y*W es el nuevo "Y" Columnas W más X*W es el nuevo "X"

Nota 3:

El valor del "X VARIABLE 2" es el índice de la pendiente.

Interpretation of the slope index of inequality

Interpretation:	For the data in the example, for that country in that
	year, there were 155 more maternal deaths per
	100,000 live births among the provinces of the most
	illiterate group than in the less illiterate group, taking
	into consideration the information on the whole gradi-
	ent and their population weights.

Note:

See steps 5, 6 and 7 of the slope index for non-grouped data for further explanation about the weighting and estimations using regression with Excel.

Preparation of the data table

through "cumulative frequency" In the case of retaining the same dataset, the user will be using the same Repeat steps 1-3 of the slope index for non-grouped data, or copy the table including the first six columns values as initial inputs.

ц	Cumulative equency (cwPob)		0.077	0.116	0.136	0.167	0.293	0.357	0.401	0.427	0.478	0.509	0.586	0.622	0.682	0.713	0.740	1.000		
ш	Relative frequency fre		0.077	0.040	0.020	0:030	0.126	0.064	0.044	0.026	0.051	0.031	0.076	0.037	0.059	0.032	0.027	0.260	1.000	
D	Equity stratifer	Women illiteracy	34.4	32.4	32.2	32.1	30.5	29.1	27.2	26.6	18.2	17.4	17.4	17.3	16.9	16.8	16	1.11		
υ	Population	Live births	9,096	4,681	2,356	3,587	14,926	7,624	5,180	3,059	6,077	3,712	9,042	4,335	7,007	3,733	3,156	30,812	118,383	
8	Health indicator	Maternal mortality ratio (MMR)	133.1	243.09	184.76	137.1	106.4	100.8	57.3	63.1	31.3	0.0	55.3	0.0	43.0	80.2	125.31	23.1		
A	Geographical unit	District	U	z	0	A	_	0	Σ	_	×	8	U	ш	I	LL	٩	_	Total	
1	-	2	3	4	S	9	~	00	σ	H	H	1	1	17	11	H	1	2	2	ł

c. Concentration index for non-grouped data

40

To the table, add the following columns to the right:

- a) Health share (fHealth)
- b) Relative frequency of the health share (wHealth)
- c) Cumulative relative frequency of the health share (cwHealth)
- d) Health concentration index (HCI)

			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-	HC																		
_	cwHealth																		
н	wHealth																		
9	fHealth		Ctrl) 🗸																
ш	Cumulative frequency (cwPob)		0.077	0.116	0.136	0.167	0.293	0.357	0.401	0.427	0.478	0.509	0.586	0.622	0.682	0.713	0.740	1.000	
ш	Relative frequency		0.077	0.040	0.020	0:030	0.126	0.064	0.044	0.026	0.051	0.031	0.076	0.037	0.059	0.032	0.027	0.260	1.000
D	Equity stratifer	Women illiteracy	34.4	32.4	32.2	32.1	30.5	29.1	27.2	26.6	18.2	17.4	17.4	17.3	16.9	16.8	16	11.1	
С	Population	Live births	960'6	4,681	2,356	3,587	14,926	7,624	5,180	3,059	6,077	3,712	9,042	4,335	7,007	3,733	3,156	30,812	118.383
В	Health indicator	Maternal mortality ratio (MMR)	133.1	243.09	184.76	137.1	106.4	100.8	57.3	63.1	31.3	0.0	55.3	0.0	43.0	80.2	125.31	23.1	
A	Geographical unit	District	g	z	0	A	_	٥	×	_	×	8	U	u	т	L	4	_	Total
		0	00	and a	10	10		00	m	0	-	N	3	4	Sol 1	9		00	5

Calculation of the health share for each geographical unit

Note:

it is necessary to extract the numerator of the health indicator for each geographical unit to graph the concentration curve with the cumulative share of health in the abscissa and the correspondent cumulative population share in the ordinate.

The numerator is obtained by solving for it in the equation defining the health indicator. Please note that different health indicators use different multiplying factors, i.e., the maternal mortality ratio uses 100,000 live births, but infant mortality uses 1,000 live births.

MMD_	(maternal deaths)	×100.000
1/11/11	(Live births)	- ×100,000

Thus:

maternal deaths=

 $\frac{RMM}{100,000} \times live births$

(Next page)

42

That is how the health share column (fHealth) is filled out. Under last unit's row, obtain the arithmetic sum of the health share.

ABCDCDFCHII <th< th=""><th></th><th>SUM</th><th>▼ (* X ✓ ƒk =B3/100000*C3</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		SUM	▼ (* X ✓ ƒk =B3/100000*C3								
1 1 1Heath indicator builtPopulation fequency (xmoth iPerturbut icanRelative icanRel	1	A	8	C	D	ш	Ŀ	G	н	_	-
2 District Maternal montality ratio (MMR) Uve births Women illutacy 3 G maternal montality ratio (MMR) Uve births 0.007 0.007 0.007 0.007 4 N 133.1 9.096 3.44 0.007 0.017 0.007 0.017 5 N 23.60 32.4 0.007 0.016 13.38 5 N 23.61 32.1 0.030 0.167 4.92 7 L N 23.80 32.1 0.039 0.167 4.92 7 L N N 0.031 13.71 3.87 7.68 13.88 8 N N N 0.039 0.166 0.167 4.92 13.88 9 M N N N N 13.71 13.89 13.88 13.88 13.88 13.88 13.88 13.88 13.88 13.88 13.88 13.88 13.88 13.88 13.88	+	Geographical unit	Health indicator	Population	Equity stratifer	Relative frequency	Cumulative frequency (cwPob)	fHealth	wHealth	cwHealth	HCI
3 6 133.1 9.06 3.4.4 0.077 0.075 0.015 0.138 7.33 3.3	2	District	Maternal mortality ratio (MMR)	Live births	Women illiteracy						
4 N 24.3 4.681 32.4 0.040 0.116 11.38 <th>e</th> <td>U</td> <td>133.1</td> <td>9,096</td> <td>34.4</td> <td>0.077</td> <td>0.077</td> <td>00000*C3</td> <td></td> <td></td> <td></td>	e	U	133.1	9,096	34.4	0.077	0.077	00000*C3			
5 0 184.76 2,356 32.2 0.020 0.136 4,35 1 6 A 137.1 3,87 3.247 3.21 0.030 0.136 4,35 4,92 7 L 1064 14,926 3.21 0.030 0.147 4,92 5 9 M 27 5,80 27,14 27,24 0.23 5,88 6,97 7,58 5	4	z	243.09	4,681	32.4	0.040	0.116	11.38			
6 A 137.1 3,887 32.1 0.030 0.167 4,92 A 7 L 10 10.4 14,956 30.5 16.4 14,956 16.4 14,956 16.4 14,956 16.4 14,956 15.88 15.99	ŝ	0	184.76	2,356	32.2	0.020	0.136	4.35			
	9	A	137.1	3,587	32.1	0.030	0.167	4.92			
8 D 100.8 7.624 29.1 0.064 0.337 7.68 D 9 M 3.73 5.180 27.2 0.064 0.337 7.68 D 1 K 3.313 5.180 27.2 0.064 0.421 2.97 D 1 K 3.313 6.077 18.2 0.026 0.427 1.93 1 K 3.13 6.077 1.24 0.031 0.437 1.93 1 K 0.026 0.727 0.031 0.596 5.00 0.01 1 K 0.037 0.174 0.037 0.628 5.00 0.02 1 K 0.037 0.037 0.622 5.00 0.001 0.72 0.01 0.73 0.01 0.73 0.01 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 </td <th>2</th> <td>_</td> <td>106.4</td> <td>14,926</td> <td>30.5</td> <td>0.126</td> <td>0.293</td> <td>15.88</td> <td></td> <td></td> <td></td>	2	_	106.4	14,926	30.5	0.126	0.293	15.88			
9 M 57.3 5,180 27.2 0.044 0.401 2.97 N 10 1 6 6.31 3.059 2.66 0.026 0.427 1.93 N 11 K 31.3 6.077 1.82 0.031 0.472 1.93 N 12 B 0.07 1.82 0.031 0.677 1.93 N N 13 6.077 1.82 17.4 0.031 0.636 5.00 N <t< td=""><th>00</th><td>٥</td><td>100.8</td><td>7,624</td><td>29.1</td><td>0.064</td><td>0.357</td><td>7.68</td><td></td><td></td><td></td></t<>	00	٥	100.8	7,624	29.1	0.064	0.357	7.68			
	σ	Σ	57.3	5,180	27.2	0.044	0.401	2.97			
	10	_	63.1	3,059	26.6	0.026	0.427	1.93			
	н	×	31.3	6,077	18.2	0.051	0.478	1.90			
	12	8	0.0	3,712	17.4	0.031	0.509	0.00			
14 E 0.0 4,335 17.3 0.037 0.622 0.00 P 15 H 43.0 7,007 16.9 0.652 0.00 20 20 16 F 9.333 16.9 0.032 0.632 3.01 2.99 17 P 125.31 3,156 16 0.032 0.713 2.99 18 J 23.1 3,0812 11.1 0.027 0.740 3.55 18 J 20,812 11.1 0.260 1.000 7.12 18 J 118,333 1.833 1.000 7.12 3.50	13	U	55.3	9,042	17.4	0.076	0.586	5.00			
	14	ш	0.0	4,335	17.3	0.037	0.622	0.00			
$ \begin{bmatrix} F & & & & & & & & & & & & & & & & & &$	15	т	43.0	7,007	16.9	0.059	0.682	3.01			
17 P 125.31 3,156 16 0.027 0.740 3,95 18 J 23.1 3,0812 11.1 0.260 1.000 7.12 15 Grad 11.3 0.260 1.000 7.12 1.000	16	L	80.2	3,733	16.8	0.032	0.713	2.99			
18 J 23.1 30,812 11.1 0.260 1.000 7.12 19 Total 11,8,383 11.3,383 1.000 85.20 85.20	17	a	125.31	3,156	16	0.027	0.740	3.95			
19 Total 118,383 1.000 85.20	18	_	23.1	30,812	11.1	0.260	1.000	7.12			
	19	Total		118,383		1.000		85.20			
	5										

Calculation of the simple relative and cumulative relative health share

The simple relative (relative, for easy) frequency of health share (wHealth) equals the quotient between the health share of each unit divided by the total health share (arithmetic sum). As shown, using the "\$" sign, the value of the total share can be locked, and the syntax may be copied down to the rest of the units.

	_		_	_			_		_												
	-	НСІ																			
	_	cwHealth																			
	н	wHealth		=G3/G\$19	0.134	0.051	0.058	0.186	060.0	0.035	0.023	0.022	0.000	0.059	0.000	0.035	0.035	0.046	0.084		
	ŋ	fHealth		12.10	11.38	4.35	4.92	15.88	7.68	2.97	1.93	1.90	0.00	5.00	0.00	3.01	2.99	3.95	7.12	85.20	ı—
	u.	Cumulative frequency (cwPob)		0.077	0.116	0.136	0.167	0.293	0.357	0.401	0.427	0.478	0.509	0.586	0.622	0.682	0.713	0.740	1.000		
	ш	Relative frequency		0.077	0.040	0.020	0:030	0.126	0.064	0.044	0.026	0.051	0.031	0.076	0.037	0.059	0.032	0.027	0.260	1.000	
	D	Equity stratifer	Women illiteracy	34.4	32.4	32.2	32.1	30.5	29.1	27.2	26.6	18.2	17.4	17.4	17.3	16.9	16.8	16	11.1		
	c	Population	Live births	9,096	4,681	2,356	3,587	14,926	7,624	5,180	3,059	6,077	3,712	9,042	4,335	7,007	3,733	3,156	30,812	118,383	
🔸 (* 🗙 🗸 🏂 =63/6\$19	8	Health indicator	Maternal mortality ratio (MMR)	133.1	243.09	184.76	137.1	106.4	100.8	57.3	63.1	31.3	0.0	55.3	0.0	43.0	80.2	125.31	23.1		
SUM	A	Geographical unit	District	IJ	z	0	A	_	0	Σ	_	×	-	U	ш	I	L	a.	_	Total	
	1	-	2	m	4	ŝ	9	~	00	σ	9	H	12	13	14	15	16	17	12	19	50

44

The cumulative relative frequency of health share (cwHealth) equals the sum of two consecutive relative frequencies. A plus its own. The user can pull down the syntax to the lower rows, as in the last column. By way of verification, the column "zero" must be filled in the immediate row before the first geographical unit. That way the cumulative relative frequency of the first unit will equal zero plus its relative frequency. For the second, it will equal the relative frequency of the first cwHealth must add-up one (1.0).

	-	th cwHealth HCI		.142 0.142	.134 =I3+H4	.051 0.327	.058 0.384	.186 0.571	.090 0.661	.035 0.696	.023 0.719	.022 0.741	.000 0.741	.059 0.800	.000 0.800	.035 0.835	.035 0.870	.046 0.916	.084 1.000		
	H 9	fHealth wHeal		12.10 0	11.38 0	4.35 0	4.92 0	15.88 0	7.68 0	2.97 0	1.93 0	1.90 0	0.00	5.00 0	0.00	3.01 0	2.99 0	3.95 0	7.12 0	85.20	
	L	Cumulative frequency (cwPob)		0.077	0.116	0.136	0.167	0.293	0.357	0.401	0.427	0.478	0.509	0.586	0.622	0.682	0.713	0.740	1.000		
	ш	Relative frequency		0.077	0.040	0.020	0.030	0.126	0.064	0.044	0.026	0.051	0.031	0.076	0.037	0.059	0.032	0.027	0.260	1.000	
	D	Equity stratifer	Women illiteracy	34.4	32.4	32.2	32.1	30.5	29.1	27.2	26.6	18.2	17.4	17.4	17.3	16.9	16.8	16	1.11		
	C	Population	Live births	960'6	4,681	2,356	3,587	14,926	7,624	5,180	3,059	6,077	3,712	9,042	4,335	7,007	3,733	3,156	30,812	118,383	
◆ ○ X ◆ Jx = 3+H4	8	Health indicator	Maternal mortality ratio (MMR)	133.1	243.09	184.76	137.1	106.4	100.8	57.3	63.1	31.3	0.0	55.3	0.0	43.0	80.2	125.31	23.1		
SUM	A	Geographical unit	District	5	z	0	A		٥	Σ	-	×	8	C	ш	5 H	L	7 P	[9 Total	0
		-	2	0	4	S	9	~	00	σ	Ħ	H	H	1 H	14	1	1	H	15	1	2(

Step 4 🕨

Estimation of the health concentration index (HCI)

Both cumulative relative frequencies of the population and health share columns will be the inputs to estimate the health concentration index using the Fuller formula of cross-product difference.

the cumulative relative frequency of health share of the second unit. The result is subtracted from the product of the cumulative relative frequency of population of the second unit times the cumulative relative frequency of health share of The HCI for the first unit will be the product of the cumulative relative frequency of population of the first unit times the first unit.

$HCI_1 = (cwpob_1 \times cwHealth_2) - (cwpob_2 \times cwHealth_1)$

					-	10	~	~	-	C ¹	~		-	~	_	~	-	~	-	-
-	HCI		t)-(I3*F4)	0.00046047	-0.00203341	-0.01742035	-0.01036463	-0.01648535	-0.00890061	-0.02735932	-0.02323013	-0.02669317	-0.02927801	-0.02531568	-0.00238161	0.00990438	-0.17673391	0	-0.35118694	
-	cwHealth		0.142	0.276	0.327	0.384	0.571	0.661	0.696	0.719	0.741	0.741	0.800	0.800	0.835	0.870	0.916	1.000		
Ŧ	wHealth		0.142	0.134	0.051	0.058	0.186	060.0	0.035	0.023	0.022	0.000	0.059	0.000	0.035	0.035	0.046	0.084		
0	fHealth		12.10	11.38	4.35	4.92	15.88	7.68	2.97	1.93	1.90	00.0	5.00	0.00	3.01	2.99	3.95	7.12	85.20	
u	Cumulative frequency (cwPob)		0.077	0.116	0.136	0.167	0.293	0.357	0.401	0.427	0.478	0.509	0.586	0.622	0.682	0.713	0.740	1.000		
ш	Relative frequency		0.077	0.040	0.020	0.030	0.126	0.064	0.044	0.026	0.051	0.031	0.076	0.037	0.059	0.032	0.027	0.260	1.000	
٥	Equity stratifer	Women illiteracy	34.4	32.4	32.2	32.1	30.5	29.1	27.2	26.6	18.2	17.4	17.4	17.3	16.9	16.8	16	11.1		
U	Population	Live births	960'6	4,681	2,356	3,587	14,926	7,624	5,180	3,059	6,077	3,712	9,042	4,335	7,007	3,733	3,156	30,812	118,383	
æ	Health indicator	Maternal mortality ratio (MMR)	133.1	243.09	184.76	137.1	106.4	100.8	57.3	63.1	31.3	0.0	55.3	0.0	43.0	80.2	125.31	23.1		
A	Geographical unit	District	5	7	0	4		0	2		~		0		-		0		Total	
		2	m	4	5	9	~		6	9	-	12	2	4	5	9	5	00	6	Í

46

The fractional areas thus calculated are to be added to get the final HCI. In the example shown, the result is -0.35

			_	-									-	-	-	-	-	-	-	_	
	-	НС		0.00464444	0.00046047	-0.00203341	-0.01742035	-0.01036463	-0.01648539	-0.00890061	-0.02735932	-0.02323013	-0.02669317	-0.02927801	-0.02531568	-0.00238161	0.00990438	-0.17673391	0	M(J3:J18)	
	-	cwHealth		0.142	0.276	0.327	0.384	0.571	0.661	0.696	0.719	0.741	0.741	0.800	0.800	0.835	0.870	0.916	1.000		
	т	wHealth		0.142	0.134	0.051	0.058	0.186	060.0	0.035	0.023	0.022	0.000	0.059	0.000	0.035	0.035	0.046	0.084		
	U	fHealth		12.10	11.38	4.35	4.92	15.88	7.68	2.97	1.93	1.90	0.00	5.00	0.00	3.01	2.99	3.95	7.12	85.20	
	L	Cumulative frequency (cwPob)		0.077	0.116	0.136	0.167	0.293	0.357	0.401	0.427	0.478	0.509	0.586	0.622	0.682	0.713	0.740	1.000		
	ω	Relative frequency		0.077	0.040	0.020	0:030	0.126	0.064	0.044	0.026	0.051	0.031	0.076	0.037	0.059	0.032	0.027	0.260	1.000	
	D	Equity stratifer	Women illiteracy	34.4	32.4	32.2	32.1	30.5	29.1	27.2	26.6	18.2	17.4	17.4	17.3	16.9	16.8	16	11.1		
	U	Population	Live births	960'6	4,681	2,356	3,587	14,926	7,624	5,180	3,059	6,077	3,712	9,042	4,335	7,007	3,733	3,156	30,812	118,383	
🔸 (* 🗙 🗸 fix =SUM(J3:J18)	۵	Health indicator	Maternal mortality ratio (MMR)	133.1	243.09	184.76	137.1	106.4	100.8	57.3	63.1	31.3	0.0	55.3	0.0	43.0	80.2	125.31	23.1		
SUM	A	Geographical unit	District	U	z	0	A		0	Σ	_	×		U	ш	т	L	٩.	_	Total	
			2	m	4	S	9	5	00	σ	9	11	12	13	14	15	16	17	18	19	20

Step Interpretation of the HCI

Step

6

This complex measure makes a comparison in relative terms, between the share of population and the share of health (or disease) in a certain time and place. Thus it is a dimensionless measure. Theoretical values fluctuate among -1 (in the case a single person would concentrate the whole burden of disease) and +1 (in the case a single person would concentrate the whole health coverage). In practice, as referred by a bibliography(1), the HCI rarely exceeds [0.5]. Conventionally, values around [0.2] and [0.3] are interpreted as a reasonably high inequality.

In the presented example, an HCI=-0.35 indicates a considerably high inequality (>|0.3|) with a higher concentration of maternal deaths among the more illiterate population.

Another way of looking at it is finding approximately half of the cumulative population share and what is its corresponding (in this case) mortality share. In the example, 50.9% of the population is accumulated through Province "B" in cell F12. Its corresponding share of mortality is shown in cell I12, 74.1%. In other words, the most socially deprived half of the population shares more than half of the maternal deaths.

Finally, there is an alternative interpretation available(2). Multiplying the HCI times 75 equals the percentage of health (in this case maternal deaths) that would have to be redistributed among the less-burdened half of the population to achieve equality. Nevertheless, this translation might arise ethical concerns about the redistribution of disease burden /health coverage; as the aspirational goal is getting the entire population to experience the good health status of the most socially advantaged.

Plotting of the concentration curve

Copy the following columns in a separate spreadsheet with the following titles: Name of the geographic unit, the cumulative relative frequency of population (cwpob) and cumulative relative frequency of health (cwHealth). Add a column to the right named "Equity line." The three columns on the right should start with a zero and end with a one, as in the image. Note that the zero is written in the immediate row before the first geographical unit.

	A	В	С	D
1	Geographical unit	Cumulative frequency (cwPob)	cwHealth	Equity line
2	District	0	0	0
3	G	0.0768	0.1421	0.0768
4	N	0.1164	0.2756	0.1164
5	0	0.1363	0.3267	0.1363
6	A	0.1666	0.3844	0.1666
7	L	0.2927	0.5708	0.2927
8	D	0.3571	0.6610	0.3571
9	M	0.4008	0.6959	0.4008
10	1	0.4267	0.7185	0.4267
11	к	0.4780	0.7409	0.4780
12	В	0.5093	0.7409	0.5093
13	с	0.5857	0.7995	0.5857
14	E	0.6223	0.7995	0.6223
15	н	0.6815	0.8349	0.6815
16	F	0.7131	0.8700	0.7131
17	P	0.7397	0.9165	0.7397
18	1	1	1	1

Select the cwpob column. Press the Ctrl key and hold it. Select the cwHealth column and continue holding the Ctrl key as the user selects the Equity line column.

	Y	Wol	-																										
		Header & Footer			×														Health	uity line									
	V	Text Box			_														5	Ű									
	Q3	Hyperlink	Links																							[1.2		
		Slicer	Filter		-																					-	H H		
		Column Win/Loss	parklines		н										5											-	0.8		
	3	Line				1		1									2										Ŭ		
	0	ther arts •		2	200	2	No.				hart Two															-	0.4		
		Scatter 0	Scatter	0	••••		2		×	K,	ALC OF															-	0.2		
	4	Area	2			1	3																				•		
N		Bar ↓	Charts		ш						1.2			-		0.0			0.0		2	5		0.2					
Viev		+ Pie				a	0	768	164	363	666	927	571	008	267	780	093	857	223	815	131	397	1						
Review	Ş	Line +			٥	luity lin		0.0	0.1	0.1	0.1	0.2	0.3	0.4	0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7							
ata	-	Column				g	0	E	9	1	4	8	0	6	S	6	6	5	5	6	0	5	1						
rmulas D		Screenshot		alth	U	cwHealth		0.142	0.275	0.326	0.384	0.570	0.661	0.695	0.718	0.740	0.740	0.795	0.795	0.834	0.870	0.916							
t Fo		martArt :	su	cwHea		uency	•	0.0768	0.1164	0.1363	0.1666	0.2927	0.3571	0.4008	0.4267	0.4780	0.5093	0.5857	0.6223	0.6815	0.7131	0.7397	1						
le Layout		hapes Sr	lustratio	fx	8	/e frequ vPob)			Ű	Ű	Ű	Ű	Ű	Ŭ	Ű	Ű	Ű	Ű	Ű	Ű	Ű	Ű							
Pag		Clip S Art				mulativ (cv																							
Insert	्	icture		•		ujt Uli																							
1		able	-		A	phical u	strict																						
		Table To	Tables	5		seogra	D		-	_	_		_	5			_			-									
Ē		Pivot				1	2	m	4	5	6 4	7	00	9	10	11	12 E	13 (14 E	15 F	16 F	17 F	18 J	19	20	21	22	23	24

Go to the Insert menu → Graph. Select scatterplot with smooth lines. Personalize the labels accordingly, considering:

- a) The relative cumulative frequency of population should be plotted on the abscissa axis (x) and the relative cumulative frequency of health on the ordinate axis (y)
- b) The range goes from 0 to 1
- c) One curve should be plotted for each analyzed year
- d) HCl < 0 correspond to a curve above the theoretical equity line, and HCl > 0 to a curve plotted below the theoretical equity line
- e) The absolute value of the HCI equals twice the area between the curve and the equity line

	J			tified by	62 000	on curve								concentration curve							** **	
	-			AR stra		entratio		•										'	-	y Illiteracy		
	н			v in MN	,	y. Conce	r vear X	v mod		5									9.0	ion ordered b	9999	
	IJ			inqualit		Illiterac	ţ	2											4.0	are of populat		
	L			Relative		women														cumultaive sh		
	ш									ым	M 1	0 9J) I EU S	90 40 4	itd	m 0.2	no	0			43	
	D	Equity line	0	0.0768	0.1164	0.1363	0.1666	0.2927	0.3571	0.4008	0.4267	0.4780	0.5093	0.5857	0.6223	0.6815	0.7131	0.7397	1			
	c	cwHealth	•	0.1421	0.2756	0.3267	0.3844	0.5708	0.6610	0.6959	0.7185	0.7409	0.7409	0.7995	0.7995	0.8349	0.8700	0.9165	1			
▲ () }	8	Cumulative frequency (cwPob)	0	0.0768	0.1164	0.1363	0.1666	0.2927	0.3571	0.4008	0.4267	0.4780	0.5093	0.5857	0.6223	0.6815	0.7131	0.7397	1			
Chart 1	A	Geographical unit	2 District	5	Z	0	5 A	7 L	D	Σ	0 1	1 K	2 B	3 C	4 E	5 H	6 F	7 P	8]	6	0	1

d. Health concentration index for grouped data

In case there were outliers affecting the estimation of the HCI, one option is to group data using quantiles.

Щ	ollow ste	ps 1-3 in HCI for n	on-grouped	l data or copy the	e table in c	ase the user	has al	ready	built it.
	NUS	► (► X ✔ JA =13+H4							
	A	8	U	Q	w	u	5	Ŧ	-
e e	Geographical unit	Health indicator	Population	Equity stratifer	Relative frequency	Cumulative frequency (cwPob)	fHealth	wHealth	cwHealth
2	District	Maternal mortality ratio (MMR)	Live births	Women illiteracy					
m	5	133.1	9'096	34.4	0.077	0.077	12.10	0.142	0.142
4	z	243.09	4,681	32.4	0.040	0.116	11.38	0.134	=I3+H4
ŝ	0	184.76	2,356	32.2	0.020	0.136	4.35	0.051	0.327
9	A	137.1	3,587	32.1	0:030	0.167	4.92	0.058	0.384
~	-	106.4	14,926	30.5	0.126	0.293	15.88	0.186	0.571
00	0	100.8	7,624	29.1	0.064	0.357	7.68	060.0	0.661
6	W	57.3	5,180	27.2	0.044	0.401	2.97	0.035	0.696
9	_	63.1	3,059	26.6	0.026	0.427	1.93	0.023	0.719
11	×	31.3	6,077	18.2	0.051	0.478	1.90	0.022	0.741
12	8	0.0	3,712	17.4	0.031	0.509	0.00	0.000	0.741
13	0	55.3	9,042	17.4	0.076	0.586	5.00	0.059	0.800
14	u	0.0	4,335	17.3	0.037	0.622	0.00	0.000	0.800
15	н	43.0	7,007	16.9	0.059	0.682	3.01	0.035	0.835
16	ш	80.2	3,733	16.8	0.032	0.713	2.99	0.035	0.870
17	a	125.31	3,156	16	0.027	0.740	3.95	0.046	0.916
12	_	23.1	30,812	111	0.260	1.000	7.12	0.084	1.000
19	Total		118,383		1.000		85.20		
20									
21	k value	cut-off point							
22	0.2	16.9							
23	0.4	17.4							
24	0.6	27.2							
25	0.8	32.1							

Construction of a table as the one used in step 3 for HCI for non-grouped data

Step 1

50

Grouping data

use the syntax =PERCENTILE.INC (range of the data on the equity stratifier, k). When using quintiles, k takes values 0.2, 0.4, 0.6 and 0.8. The image shows data grouped in quintiles, as well as the following steps. For details on grouping data, Data are grouped according to the distribution quantiles of the equity stratifier. To get the cut-off points of the distribution, see step 2 of the absolute gap of inequality.

 			_					_					_		_	_		_		_		_	_		_	
-	cwHealth		0.142	0.276	0.327	0.384	0.571	0.661	0.696	0.719	0.741	0.741	0.800	0.800	0.835	0.870	0.916	1.000								
H	wHealth		0.142	0.134	0.051	0.058	0.186	060.0	0.035	0.023	0.022	0.000	0.059	0.000	0.035	0.035	0.046	0.084								
g	fHealth		12.10	11.38	4.35	4.92	15.88	7.68	2.97	1.93	1.90	0.00	5.00	0.00	3.01	2.99	3.95	7.12	85.20							
Ľ	Cumulative frequency (cwPob)		0.077	0.116	0.136	0.167	0.293	0.357	0.401	0.427	0.478	0.509	0.586	0.622	0.682	0.713	0.740	1.000								
ш	Relative frequency		0.077	0.040	0.020	0:030	0.126	0.064	0.044	0.026	0.051	0.031	0.076	0.037	0.059	0.032	0.027	0.260	1.000							
D	Equity stratifer	Women illiteracy	34.4	32.4	32.2	32.1	30.5	29.1	27.2	26.6	18.2	17.4	17.4	17.3	16.9	16.8	16	11.1								
 С	Population	Live births	9'096	4,681	2,356	3,587	14,926	7,624	5,180	3,059	6,077	3,712	9,042	4,335	7,007	3,733	3,156	30,812	118,383							
B	Health indicator	rnal mortality ratio (MMR)	133.1	243.09	184.76	137.1	106.4	100.8	57.3	63.1	31.3	0.0	55.3	0.0	43.0	80.2	125.31	23.1			point	NTILE.INC(D\$3:D\$18,A22)	17.4	27.2	32.1	
A	Geographical unit	District Mate																	otal		value cut-off	0.2] =PERCE	0.4	0.6	0.8	
-		2	0 m	4 N	5	6 A	7 L	0	9	10	11 K	12 B	13 C	14 E	15 H	16 F	17 P	18 J	19 T	20	21 k	22	23	24	25	

52

Obtaining the population share of each quintile

The columns for the equity stratifier and the population shares may be hidden, to improve visualization. Add three additional columns to the right:

- Population of the guintile: sum of the population of each of the geographical units included in the guintile
- Relative frequency (population) for the quintile: the population of each quintile divided by the total of the population
- The cumulative relative frequency (population) for the quintile: for quintile 1, this will equal zero plus the relative frequency of quintile 1. For quintile 2, this will equal the cumulative frequency of quintile 1 plus the relative frequency of quintile 2, and consecutively until quintile 5 which will add-up 1, as shown in the image. •

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NUN	+ (> X < J × =	S+K8										
Interface Population Equipy traiting Equipy traiting Equipy traiting Equipy traiting Conducting	A	-	U	٥	u	u	U	Ŧ	-	-	×	_	
Interview MMR Volument literary Volument liter	ohical unit	t Health indicator	Population	Equity stratifer	Relative frequency	Cumulative frequency	Health	wHealth o	cwHealth	quintile pop	relative frequency of the quintile	cwpob of quintile ⁵	
1331 906 344 0007 1210 0142 0142 0134 1436 236 324 0.000 0.116 43 0.132 16133 0.134 164.5 13.66 0.00 0.116 43 0.03 0.013 0.134 104.4 13.67 0.23 0.030 0.157 43 0.03 0.013 104.4 13.67 0.030 0.157 43 0.030 0.014 0.03 1033 5.030 0.031 0.031 0.031 0.031 0.031 0.031 1033 5.030 0.031 0.031 0.031 0.031 0.031 0.031 1033 5.042 0.031 0.032 0.033 0.031 0.031 0.031 1033 5.042 0.031 0.033 0.033 0.031 0.031 0.031 1033 5.042 0.031 0.033 0.033 0.033 0.031 0.013 0.013 <	strict	MMR	Live births	Women illiteracy									
1 2330 4641 2324 0.000 0.115 133 0.227 1613 0.136 133 0.136 133 0.136 133 0.136 133 0.136 133 0.136 0.136 133 0.136 <t< td=""><td></td><td>133.1</td><td>9,096</td><td>34.4</td><td>0.077</td><td>0.077</td><td>12.10</td><td>0.142</td><td>0.142</td><td></td><td></td><td></td><td></td></t<>		133.1	9,096	34.4	0.077	0.077	12.10	0.142	0.142				
184.76 2356 322 0.000 0134 430 0136 <t< td=""><td></td><td>243.09</td><td>4,681</td><td>32.4</td><td>0.040</td><td>0.116</td><td>11.38</td><td>0.134</td><td>0.276</td><td></td><td></td><td></td><td></td></t<>		243.09	4,681	32.4	0.040	0.116	11.38	0.134	0.276				
131 3.5% 2.1 0.00 0.15 4.20 0.05 0.34 1.01 0.02 0.03 0		184.76	2,356	32.2	0.020	0.136	4.35	0.051	0.327	16,133	0.136	0.136	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		137.1	3,587	32.1	0:030	0.167	4.92	0.058	0.384				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		106.4	14,926	30.5	0.126	0.293	15.88	0.186	0.571				
73 5180 772 0.044 0.411 273 0.665 0.041 0.431 0.031 0.665 0.411 243 0.031 0.434 14316 0.131 313 6077 18.5 0.036 0.473 190 0.023 0.713 0.431 14316 0.131 533 942 1714 0.031 0.565 0.030 0.800 0.800 0.800 0.431 14316 0.131 0.0 742 1714 0.037 0.563 0.003 0.800 0.800 0.800 0.433 0.434 0.643		100.8	7,624	29.1	0.064	0.357	7.68	060.0	0.661	26,137	0.221	=L5+K8	
631 3059 566 0003 0.713 133 6071 133 6071 133 6071 133 6071 133 6071 133 6071 133 6071 133 6071 133 6071 133 6071 0131 033 133 0031 0359 000 0341 14316 0131 0335 0131 0335 0131 0335 0131 0335 0131 0335 0131 0335 0131 0335 0131 0335 0131 0335 0131 0335 0131 0335 0131 0335 0131 0335 0131 0335 0131 0335 0131 0335 0131 0335 0131 0132 0131 0132 0131 0132 0131 0132 0131 0132 0131 0132 0131 0132 0131 0132 0132 0132 0132 0131 0132 0132 0131 0132 0131 0132		57.3	5,180	27.2	0.044	0.401	2.97	0.035	0.696				
313 607 182 0031 0.435 103 0.431 14,316 0.111 0.436 553 9.02 3712 17.4 0.031 0.569 0.00 0.031 0.569 0.00 0.031 0.645 0.645 0.665 0.600 0.641 0.012 0.652 0.00 0.600 0.662		63.1	3,059	26.6	0.026	0.427	1.93	0.023	0.719				
10 3/12 1/14 0.031 0.595 0.00 0.741 0.001 0.741 0.001 0.741 0.001 0.741 0.001 0.741 0.001 0.741 0.001 0.741 0.001 0.741 0.001 0.741 0.001 0.001 0.001 0.001 0.001 0.001 0.013 0.013 0.013 0.013 0.014		31.3	6,077	18.2	0.051	0.478	1.90	0.022	0.741	14,316	0.121	0.478	
533 9042 174 0.076 0.586 500 0.690 0.600<		0.0	3,712	17.4	0.031	0.509	0.00	0.000	0.741				
10 433 173 003 0632 000 0607 1763 0144 0032 11 100 16.9 0039 0639 0630		55.3	9,042	17.4	0.076	0.586	5.00	0.059	0.800				
100 16.9 0.003 0.633 0.003 0.633 0.003 0.633 0.003 0.633 0.003 0.633 0.003 0.633 0.003 0.636 0.003 0.636 0.003 0.636 0.003 0.636 0.003 0.636 0.003 0.636 0.003 0.636 0.003 0.016 0.		0.0	4,335	17.3	0.037	0.622	0.00	0.000	0.800	17,089	0.144	0.622	
80.2 3.73 16.8 0.002 0.73 2.90 0.03 6.77 100 12.3 3.156 11 0.027 0.70 7.29 0.03 6.77 100 23.1 3.156 11 0.260 100 7.2 0.03 7.20 0.03 23.1 3.155 11 0.260 100 7.2 0.03 100 4.706 0.375 11.3 113.33 1 113.33 1.000 5.5.0 100 118.33 1 1000 13 113.33 1 1.333 1.000 5.5.0 100 7 1100 0.2 13.3 1.3 1.3 1.3 1.3 1.3 1.3 0.2 13.3 1.1 1.1 1.3		43.0	7,007	16.9	0.059	0.682	3.01	0.035	0.835				
123.1 3.156 16 0.027 0.340 335 1100* 1 3.13 3.11 0.11 0.240 3.25 0.644 0.035 0.375 1000* 1 113.33 11.1 0.200 0.240 1000 4.776 0.375 0.004 1000* 0.1011 113.333 11.333 11.333 11.333 1 1 100 10.5 1 0.01 0.15 0.01 <t< td=""><td></td><td>80.2</td><td>3,733</td><td>16.8</td><td>0.032</td><td>0.713</td><td>2.99</td><td>0.035</td><td>0.870</td><td></td><td></td><td></td><td></td></t<>		80.2	3,733	16.8	0.032	0.713	2.99	0.035	0.870				
23.1 30.812 11.1 0.260 1000 71.2 0.378 0.378 1000 1 116,333 116,333 1000 55.20 1000 118,333 1 0.400 fightin 116,333 1000 55.20 1000 118,333 1 0.410 fightin 116,333 1 1000 55.20 1000 118,333 1 0.411 fightin 1<		125.31	3,156	16	0.027	0.740	3.95	0.046	0.916				
11,333 1000 65.20 1000 118,333 1 ottoff point 0.0 118,333 1 1 1 0.1 0.2 16.9 1 1 1 1 0.2 16.9 1 1 1 1 1 1 0.2 16.9 1		23.1	30,812	11.1	0.260	1.000	7.12	0.084	1.000	44,708	0.378	1.000	
attoff point attoff point 0.2 17.4 0.4 17.4 0.6 27.2 0.8 32.1 0.8 32.1			118,383		1.000		85.20	1.000		118,383	1		
0.2 0.2 0.4 0.4 0.4 0.4 17.4 0.4 0.4 0.4 0.5 27.2 0.4 0.4 0.4 0.6 27.2 0.4 0.4 0.4 0.3 32.1 0.4 0.4 0.4													
02 169 03 77,3 06 77,3 08 32,1 08 32,1		cut-off point											
0.4 11/4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	0.2	16.9											
0.6 272 0.8 32.1 0.8 32.1	0.4	17.4											
	0.6	27.2											
	0.8	32.1											

Step 4 🕨

Obtaining the health share of each quintile

Add two columns to the right:

- Relative frequency of health: equals the sum of the relative frequencies of the health of the units included in the quintile.
- quintile 2, this will equal the cumulative frequency of quintile 1 plus the relative frequency of quintile 2, and consecutively The cumulative relative frequency of health: for quintile 1, this will equal zero plus the relative frequency of quintile 1. For until quintile 5 which will add-up 1, as shown in the image.

L	SLIM	✓ = × ✓ f _k =	IS+MR											
1	A		U	Q	ш	u.	9	Ŧ	_	-	×	_	Σ	z
H	Geographical uni	tt Health indicator	Population	Equity stratifer	Relative frequency	Cumulative frequency	fHealth	wHealth	cwHealth	quintile pop	relative frequency of the quintile	cwpob of quintile	share of health indicator for the quintile	cumulative share of health for the quintile
2	District	MMR	Live births	Women illiteracy										
m	U	133.1	960'6	34.4	0.077	0.077	12.10	0.142	0.142					
4	z	243.09	4,681	32.4	0.040	0.116	11.38	0.134	0.276					
ŝ	0	184.76	2,356	32.2	0.020	0.136	4.35	0.051	0.327	16,133	0.136	0.136	0.327	0.327
9	A	137.1	3,587	32.1	0.030	0.167	4.92	0.058	0.384					
1	_	106.4	14,926	30.5	0.126	0.293	15.88	0.186	0.571					
00	٩	100.8	7,624	29.1	0.064	0.357	7.68	060.0	0.661	26,137	0.221	0.357	0.334	=N5+M8
6	Σ	57.3	5,180	27.2	0.044	0.401	2.97	0.035	0.696					
10	_	63.1	3,059	26.6	0.026	0.427	1.93	0.023	0.719					
11	×	31.3	6,077	18.2	0.051	0.478	1.90	0.022	0.741	14,316	0.121	0.478	0.080	0.741
12		0.0	3,712	17.4	0.031	0.509	0.00	0.000	0.741					
13	U	55.3	9,042	17.4	0.076	0.586	5.00	0.059	0.800					
14	ш	0.0	4,335	17.3	0.037	0.622	0.00	0.000	0.800	17,089	0.144	0.622	0.059	0.800
15	I	43.0	7,007	16.9	0.059	0.682	3.01	0.035	0.835					
16	L	80.2	3,733	16.8	0.032	0.713	2.99	0.035	0.870					
17	٩	125.31	3,156	16	0.027	0.740	3.95	0.046	0.916					
10	_	23.1	30,812	1.11	0.260	1.000	7.12	0.084	1.000	44,708	0.378	1.000	0.200	1.000
19	Total		118,383		1.000		85.20	1.000		118,383	1		1.000	
20														
21	k value	cut-off point												
22	0.2	2 16.9												
23	0.4	1 17.4												
24	9.0	5 27.2												
ł	0	1.15												

S
da
s

Estimation of the Health Concentration Index (HCI)

Two columns are needed: relative cumulative frequency of population, and relative cumulative frequency of health (columns L and N in the example)

The Fuller formula is applied here as in step 4 of HCI for non-grouped data.

the cumulative relative frequency of health share of the second quintile. The result is subtracted from the product of the cumulative relative frequency of population of the second quintile times the cumulative relative frequency of health share The HCI for the first quintile will be the product of the cumulative relative frequency of population of the first quintile times of the first quintile. Brackets should be used in the syntax to indicate the subtraction of products.

$HCI_1 = (cwpob_1 \times cwHealth_2) - (cwpob_2 \times cwHealth_1)$

The total HCI will equal the sum of the HCI of the quintiles.

2	2	cumulative share of HCI health for the quintile				0.327]:)-(N5-L8)			0.661 -0.051			0.741 -0.079			0.800 -0.177				1.000 0.000	-0.187				
2	Σ	share of health indicator for the quintile				0.327			0.334			0.080			0.059				0.200	1.000				
-		cwpob of quintile				0.136			0.357			0.478			0.622				1.000					
2	۷	elative frequency of the quintile				0.136			0.221			0.121			0.144				0.378	1				
-		uintile pop				16,133			26,137			14,316			17,089				44,708	118,383				
-	-	wHealth q		0.142	0.276	0.327	0.384	0.571	0.661	0.696	0.719	0.741	0.741	0.800	0.800	0.835	0.870	0.916	1.000					
-		wHealth c		0.142	0.134	0.051	0.058	0.186	060.0	0.035	0.023	0.022	0.000	0.059	0.000	0.035	0.035	0.046	0.084	1.000				
e	9	fHealth		12.10	11.38	4.35	4.92	15.88	7.68	2.97	1.93	1.90	0.00	5.00	0.00	3.01	2.99	3.95	7.12	85.20				
	-	Cumulative frequency		0.077	0.116	0.136	0.167	0.293	0.357	0.401	0.427	0.478	0.509	0.586	0.622	0.682	0.713	0.740	1.000					
	u	Relative frequency		0.077	0.040	0.020	0:030	0.126	0.064	0.044	0.026	0.051	0.031	0.076	0.037	0.059	0.032	0.027	0.260	1.000				
-	2	Equity stratifer	Women illiteracy	34.4	32.4	32.2	32.1	30.5	29.1	27.2	26.6	18.2	17.4	17.4	17.3	16.9	16.8	16	111					
c	ر	Population	Live births	9,096	4,681	2,356	3,587	14,926	7,624	5,180	3,059	6,077	3,712	9,042	4,335	7,007	3,733	3,156	30,812	118,383				
a	•	Health indicator	MMR	133.1	243.09	184.76	137.1	106.4	100.8	57.3	63.1	31.3	0.0	55.3	0.0	43.0	80.2	125.31	23.1		out-off point	16.9	17.4	
V	t	Geographical unit	District	5	z	0	A	-	0	¥		×	8	0	u.	н		٩	-	Total	k value c	0.2	0.4	00

Bibliography

- 1. Donnell O, Wagstaff A, Lindelow M. Analyzing Health Equity Using Household Survey Data. Washington: World Bank; 2008. 95-96 p.
- 2. World Health Organization. Handbook on Health Inequality Monitoring. Hosseinpoor AR, editor. Luxembourg: World Health Organization; 2013. 105 p.

ANNEX 1

1

Instalation of the Analysis ToolPak Add-inn on Excel 2013.

Step In the Excel file, click on the File menu, tag Options. 'চ-∂-⊈--H File Home Page Layout Insert Draw Formulas X Calibri • 11 • A A = = = 87--B I U - ⊞ - 🏷 - A - ≡ ≡ ≡ 🖷 🖲 S Alic Clipboard 🗔 Font G. A1 Ŧ $\times \checkmark f_x$ D F 1 A В C Е 1 2 3 4 5 6 E Open New L Recent Open Shared with Me OneDrive S Sites Publish

Close

Feedback

Options

ConeDrive

This PC

Browse

Cther Web Locations

Add a Place

56

On the Options window, select Add-ins. In the dropdown menu at the bottom section of the window, select Manage Excel Add-ins, and the press Go.

-

Excel Options					× ¿
General Formulas		View and manage Microsoft Office Add	d-ins.		
Proofing	A	dd-ins			
Save		Name ▲	ocation	Type	•
Language Advanced		Active Application Add-ins No Active Application Add-ins			
Customize Ribbon		Inactive Application Add-ins Analvsis ToolPak C:	:\fffice16\Libran\\Analvsis\ANALYS32.XLL	Excel Add-in	
Quick Access Toolbar		Analysis ToolPak - VBA C:	Chue16/Library/Analysis/ATPVBAEN.XLAM	Excel Add-in	
Add-ins		U	c:/ot/Office16/Library/EUROTOOL,XLAM	Excel Add-in	
Trust Center	7	Inquire C. Microsoft Actions Pane 3 Microsoft Power Map for Excel C.	:\off Office/Office16/DCF/NativeShim.dll :\ Excel Add-in\EXCELPLUGINSHELL.DLL	COM Add-in XML Expansio COM Add-in	n Pack
		Microsoft Power Pivot for Excel C Microsoft Power View for Excel C Solver Add-in C	::\Add-in\PowerbyottxcelClientAddin.dli :\Add-in\AdHocReportingExcelClient.dli :\ffice16\Library\SOLVER\SOLVER.XLAM	COM Add-in COM Add-in Excel Add-in	
		Document Related Add-ins No Document Related Add-ins			ł
	-	Add-in: Analysis ToolPak Publisher: Microsoft Corporation Compatibility: No compatibility information: Location: C:\Program Files\Microsoft Oft	available ffree\root\Office16\Library\Analysis\ANALYS	332.XLL	
		Description: Provides data analysis tools for	r statistical and engineering analysis		
		M <u>a</u> nage: Excel Add-ins 👻 Go			
				Х	Cancel

It will appear the Add-ins window. Click on the options "Analysis ToolPak", "Analysis ToolPak-VBA" and "Solver add-inn". And then, click on "Ok".

Step 4 🕨

You could check on the Data menu that now a new option appears: data Anlysis, where you can find the Regression tool needed to perform the step 6 for the Gradient measures of social inequality in health.

		 Data Analysis Solver 	nalysis	
		편 Group * * 친릅 Ungroup * -	Outline	
	vant to do	What-If Forecast Analysis Sheet	Forecast	
Book1 - Excel	Q Tell me what you w	Text to Columns	Data Tools	
	Review View	Filter K Advanced	rt & Filter	
	Data	Z A A Z Sort	So	
	Formulas	rections 2 erties 2 inks 2	su	
	Page Layout	Refresh & Conn Refresh & Edit L	Connection	
	Draw	Juneries Index	E	1 fx
	Insert	Show Qu From Tal	& Transfor	×
e	ē		Get	
\$	Hom	ernal Ne		•
	e.	Ext		

ata Analysis		2	X
Analysis Tools			2
Exponential Smoothing	<		4
F-Test Two-Sample for Variances	2	Ca	ncel
Fourier Analysis			
Histogram	1	-	
Moving Average			elb
Random Number Generation			
Rank and Percentile			
Regression			
Sampling			
t-Test: Paired Two Sample for Means	>		

Every Woman Every Child Latin America and Caribbean (EWEC LAC) is the regional coordination mechanism for the Global Strategy for Women's, Children's and Adolescents' Health in the context of Latin America and the Caribbean. EWEC-LAC catalyzes and supports countries in their efforts to meet the goals and targets set out in the Global Strategy and align with the Sustainable Development Goals, with a focus on reducing social inequalities in health.

EWEC-LAC collaborates with key stakeholders in the region including governments, international development agencies, civil society representatives, academic institutions, professional institutions and non-governmental organizations to catalyze and support country-led efforts with the objective to reduce disparities in access to quality health services.

